EMAIL: PASSWORD:
Front Office
UPT. PERPUSTAKAAN
Universitas Esa Unggul


Kampus Emas UEU - Jakarta Barat

Phone : 021-5674223, ext 282
Fax :
E-mail : [email protected]
Website : http://library.esaunggul.ac.id

Support (Customer Service) :
[email protected]








Welcome..guys!

Have a problem with your access?
Please, contact our technical support below:
LIVE SUPPORT


Astrid Chrisafi




! ATTENTION !

To facilitate the activation process, please fill out the member application form correctly and completely
Registration activation of our members will process up to max 24 hours (confirm by email). Please wait patiently

Still Confuse?
Please read our User Guide

Keyword
Mode
Expanded Search (for Free text search only)
 

UEU » Journal » Magister Ilmu Komputer
Posted by [email protected] at 05/05/2021 12:01:15  •  1577 Views


SISTEM PENDETEKSI BERITA HOAX DI MEDIA SOSIAL DENGAN TEKNIK DATA MINING SCIKIT LEARN

Created by :
Munawar ( 0324066901 )
Yosua Riadi Silitonga



SubjectSISTEM
PENDETEKSI
HOAX
Alt. Subject SYSTEM
DETECTION
HOAX
Keywordhoax detection
berita
scikit learn
media sosial

Description:

Saat ini sosial media khususnya twitter dan facebook telah menjadi media alternatif untuk penyebaran berita. Data menunjukkan pengaduan berita hoax mencapai 5070 di tahun 2017 (Damar, 2017). Bahkan ada kecenderungan meningkat untuk merekayasa kebohongan agar muncul sebagai kebenaran atau dikenal dengan hocus to trick (Prasetijo et al., 2017). Sepanjang pengetahuan penulis, sampai saat ini masih belum ada system deteksi hoax dalam Bahasa Indonesia kecuali yang menggunakan representasi vektor teks berdasarkan Term Frequency dan Document Frequency serta teknik klasifikasi Support Vector Machine dan Stochastic Gradient Descent dengan tingkat akurasi 60 % (Prasetijo et al., 2017). Scikit � Learn adalah modul python yang mengintegrasikan berbagai algoritma pembelajaran mesin untuk masalah yang diawasi dan tidak diawasi skala menengah. Modul ini sangat efisien untuk data mining dan analisis data (Jason, 2014). Dengan menggunakan python dan scikit learn, bisa didapatkan model pembelajar mesin untuk deteksi hoax berita di media social. Penelitian ini mencakup pembuatan aplikasi pre-processing data atas data yang sudah terkumpul dari Twitter dan Facebook selama 3 bulan, pembuatan model dengan scikit learn serta pengujian model dengan berita aktual guna menguji akurasi model dalam mendeteksi berita hoax. Hasil yang didapat dari penelitian ini diantaranya adalah berita-berita yang ada di sosial media khususnya Twitter dan Facebook bisa diidentifikasi apakah fake (palsu) atau bukan (real) dengan membuat model klasifikasi dengan TF-IDF, CountVectorizer, PassiveAgressive Classifier dan SupportVector Classifier. Model yang dikembangkan berhasil mengidentifikasi apakah suatu berita fake (palsu) atau bukan (real) dengan melihat kepada hasil akurasi dari vektor klasifikasi. Semakin tinggi akurasi suatu berita pada vektor klasifikasi semakin mudah diketahui apakah palsu atau riil.


Alt. Description

Currently social media (especially Twitter and Facebook), have become an alternative media for news dissemination, Data shows hoax news complaints reaching 5070 in 2017 (Damar, 2017). In fact there is an increasing tendency to fabricate lies to cover up the truth or known as hocus to trick (Prasetijo et al., 2017). Therefore it is necessary to develop a tool to detect whether a news is a hoax or not. To the best of our knowledge, there is no research in hoax detection system in Indonesian language except using text vector representations based on Term Frequency and Document Frequency as well as the Support Vector Machine and Stochastic Gradient Descent classification techniques with 60% of accuracy (Prasetijo et al., 2017). It still needed a research to develop an integrated applications to detect hoax news on social media. Scikit - Learn is a python module that integrates various machine learning algorithms for medium-scale supervised and uncontrolled problems. This module is very efficient for data mining and data analysis (Jason, 2014). By using python and scikit learn, machine learning models can be obtained for the detection of news hoaxes on social media. This research covers application development for pre-processing data based on data collected from Twitter and Facebook for 3 months, creating models with scikit learn and testing the model with actual news to check the accuracy of the model in detecting hoax news. The results of this study indicate that hoax news detection systems on social media can be done by creating a classification model with TF-IDF, CountVectorizer, PassiveAgressive Classifier and SupportVector Classifier. The model developed successfully shows whether a news is fake or real by looking at the accuracy of the vector classification results. The higher the accuracy of a news on the classification vector, the more easily known whether fake or real

Date Create:05/05/2021
Type:Text
Format:pdf
Language:Indonesian
Identifier:UEU-Journal-11_1244
Collection ID:11_1244


Source :
Jurnal Ilmu Komputer Volume 4 Nomor 2 Desember 2019

Relation Collection:
Fakultas Ilmu Komputer

Coverage :
Civitas Akademika Universitas Esa Unggul

Rights :
@2021 Perpustakaan Universitas Esa Unggul


Publication URL :
https://digilib.esaunggul.ac.id/sistem-pendeteksi-berita-hoax-di-media-sosial-dengan-teknik-data-mining-scikit-learn-20004.html




[ Free Download - Free for All ]

  1.  UEU-Journal-20004-11_1244.pdf - 737 KB

[ FullText Content - Please, register first ]

...No Files...

 10 Similar Document...

     No similar subject found !

 10 Related Document...






HELP US !
You can help us to define the exact keyword for this document by clicking the link below :

berita , detection , hoax , hoax detection , learn , media , media sosial , scikit , scikit learn , sosial



POLLING

Bagaimana pendapat Anda tentang repository kami ?

Bagus Sekali
Baik
Biasa
Jelek
Mengecewakan




159298101


Visitors Today : 2
Total Visitor : 1970147

Hits Today : 119639
Total Hits : 159298101

Visitors Online: 1


Calculated since
16 May 2012

You are connected from 172.17.121.29
using Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; [email protected])


UEU Digital Repository Feeds


Copyright © UEU Library 2012 - 2025 - All rights reserved.
Dublin Core Metadata Initiative and OpenArchives Compatible
Developed by Hassan